Unraveling correlated materials’ properties with noisy quantum computers:

Natural-orbitalized variational quantum eigensolving

Thomas Ayral
Atos Quantum Laboratory (Les Clayes-sous-Bois)

Journées Prospectives du Réseau Français de Chimie Théorique

November 19, 2021
How to handle strongly correlated materials with a classical computer?

- Holy grail: High-temperature superconductors

- “Spherical cow”: the Hubbard model (see David’s talk)

\[H = -t \sum_{i,j,\sigma} c^+_i c_j + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

- Failure of mean field (Hartree Fock)!

State-of-the-art classical method: Embedding

Map lattice problem to local impurity problem:

Boil problem down to “quantum quintessence”

Similar to active space selection: pick correlated degrees of freedom
Increase N_c (∼active space size) to reach convergence

Problems with increasing N_c:

- Exponential size of Hilbert space (if using FCI/exact diagonalization)
- (or) Monte-Carlo sign problem
- (or) too much entanglement for tensor network methods (MPS... see Alberto’s talk)

“Control”: nothing changes when $N_c \rightarrow N_c + 1$
Solving impurity models with quantum computers: first attempts
To reach larger impurity sizes: use a quantum computer!?

Early proposals: Bauer '16, Kreula '16
Embedding: Dynamical mean field theory
Impurity model solved with QC!
All the rest is classical

Key quantity: impurity Green’s function

\[G_{ij}(t) = \langle \psi_{GS} | c_i(t) c_j^+(0) | \psi_{GS} \rangle \]

with \(|\psi_{GS}\rangle \): ground state of impurity model

Quantum algorithm:

- (classical) Truncate infinite bath (finite #qubits!)
- Prepare ground state \(|\psi_{GS}\rangle \)
- Time-evolve \(|\psi_{GS}\rangle \) via Trotterization to measure \(G(t) \)

As expected:
- With no or “few” errors, it works: exponential speedup.
 - “few”: error levels compatible with quantum error correction.

But what with today’s QCs?
NISQ computers... and their issues

Limitations:

▶ Few qubits + Short coherence times

Expected issues:

▶ Truncate infinite bath
 – Few qubits: truncation error?

▶ Prepare ground state \(|\psi_{GS}\rangle \)
 – Adiabatic preparation... too long circuit?

▶ Time-evolve \(|\psi_{GS}\rangle \) via Trotterization to measure \(G(t) \)
 – Implementation of \(e^{iHt} \): too long circuit?
A hybrid variational approach for shorter circuits: VQE

Variational Quantum Eigensolving, Peruzzo ’14

- Prepare ground state $|\psi_{GS}\rangle$
 - Adiabatic preparation... too long circuit?

Find ground state of H:

- An old method:
 Variational principle: $\min_\theta \langle \psi_\theta | H | \psi_\theta \rangle \geq E_0$

- A new idea:
 Use QC to compute $\langle \psi_\theta | H | \psi_\theta \rangle$

- Hybrid!

Bonus 1: QPU better at preparing and measuring quantum states
Bonus 2: Can choose ansatz circuit U_θ to accommodate QPU constraints

Caveat: no speedup guarantee!
Variational Quantum Algorithms on the Atos QLM

- QLM: powerful stack for variational algorithms
- VQE for the Heisenberg model $H = XX + YY + ZZ$:

```
H_XY = Observable(2, pauli_terms=[Term(1, term, [0, 1]) for term in ['XX', 'YY', 'ZZ']])

prog = Program()
qbits = prog.qalloc(2)
theta = [ prog.new_var(float, '{theta:.3f}') for i in range(3) ]
H(qbits[0])
RY(theta[0])(qbits[1])
CNOT(qbits)
RX(theta[1])(qbits[0])
RY(theta[2])(qbits[1])
circ = prog.to_circ()

optimizer_scipy = ScipyMinimizePlugin(method="COBYLA", x0=[0.4, -0.3, 0.6])
qpu = optimizer_scipy + LinAlg()
job = circ.to_job(job_type="OBS", observable=H_XY)
result = qpu.submit(job)
print("Minimum energy =", result.value)
```

Minimum energy = -2.999999851052666

Download+install: myqlm.github.io
from qat.core import Observable, Term
from qat.lang.AQASM import Program, RY, CNOT
from qat.qpus import get_default_qpu
from qat.plugins import ScipyMinimizePlugin

we instantiate the Hamiltonian we want to approximate the ground state
hamiltonian = Observable(nqbits=2, pauli_terms=[Term(1, op, [0, 1])])

we construct the variational circuit (ansatz)
prog = Program()
reg = prog.qalloc(2)
theta = [prog.new_var(float, r'\theta_%s' % i) for i in range(2)]
RY(theta[0])(reg[0])
RY(theta[1])(reg[1])
CNOT(reg[0], reg[1])
circ = prog.to_circ()

construct a (variational) job with the variational circuit and
job = circ.to_job(observable=hamiltonian,
 nbshots=100)

we now build a stack that can handle variational jobs
stack = ScipyMinimizePlugin()
stack.add_job(job)
stack.run
Run on an actual QPU!

Download+install: myqlm.github.io

Connecting to a QPU/Backend

myQLM can be used to connect to a Qiskit Backend. This module is composed of three main classes:

- **BackendToQPU**: Synchronous QPU, capable of running in a Qiskit backend

```python
from qat.interop.qiskit import BackendToQPU

# Declare your IBM token
MY_IBM_TOKEN = "..."

# Wrap a Qiskit backend in a QPU
qpu = BackendToQPU(token=MY_IBM_TOKEN, ibmq_backend="ibmq_

# Submit a job to IBMQ
result = qpu.submit(job)
```
First attempts on NISQ computers: summary

<table>
<thead>
<tr>
<th>Keen ’20</th>
<th>Rungger ’19</th>
<th>Jaderberg ’20</th>
<th>Yao ’21</th>
</tr>
</thead>
<tbody>
<tr>
<td>One bath site (‘two site DMFT’)</td>
<td>One bath site (‘two site DMFT’)</td>
<td>One bath site (‘two site DMFT’)</td>
<td>One bath site (slave boson)</td>
</tr>
<tr>
<td>VQE (‘hardware efficient ansatz’)</td>
<td>VQE with excited states</td>
<td>VQE (with machine learning techniques)</td>
<td>VQE (unitary coupled cluster ansatz)</td>
</tr>
<tr>
<td>Trotterization.</td>
<td>Via computation of excited states.</td>
<td>Trotterization.</td>
<td>No need for Green’s function!</td>
</tr>
<tr>
<td>1 (4 qubits)</td>
<td>1 (4 qubits)</td>
<td>1 (4 qubits)</td>
<td>1 (4 qubits)</td>
</tr>
</tbody>
</table>

Number N_c of impurities

Our goal: reach larger impurity models (N_c) with same noise
Step 1/2: pick the right embedding method

Several embedding methods on the market:

<table>
<thead>
<tr>
<th></th>
<th>Dynamical Mean Field Theory</th>
<th>Rotationally-Invariant Slave Bosons (Gutzwiller)</th>
<th>Density Matrix Embedding Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td># bath levels</td>
<td>infinite</td>
<td>N_c</td>
<td>N_c</td>
</tr>
<tr>
<td>Impurity observable</td>
<td>Green’s function</td>
<td>1-RDM</td>
<td>1-RDM</td>
</tr>
<tr>
<td></td>
<td>$\langle \psi_GS</td>
<td>c_i(t) c_j^+(0)</td>
<td>\psi_GS \rangle$</td>
</tr>
<tr>
<td>Final output</td>
<td>Freq-dependent self-energy</td>
<td>Low-energy self-energy</td>
<td>Static self-energy</td>
</tr>
</tbody>
</table>

Most NISQ-compatible choice: RISB

- Well-defined bath truncation
- Simpler observable
- Access to quasiparticle renormalization factor

<table>
<thead>
<tr>
<th>Bath truncation</th>
<th>Keen '20</th>
<th>Rungger '19</th>
<th>Jaderberg '20</th>
<th>Yao '21</th>
</tr>
</thead>
<tbody>
<tr>
<td>One bath site (two site DMFT)</td>
<td>One bath site (two site DMFT)</td>
<td>One bath site (two site DMFT)</td>
<td>One bath site (slave bosons)</td>
<td></td>
</tr>
<tr>
<td>VQE (variational efficient ansatz)</td>
<td>VQE with external states</td>
<td>VQE with machine learning techniques</td>
<td>VQE (variational coupled cluster ansatz)</td>
<td></td>
</tr>
<tr>
<td>Trotterization.</td>
<td>Trotterization.</td>
<td>Trotterization.</td>
<td>No need for Green's function</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Green's function...</th>
<th>Keen '20</th>
<th>Rungger '19</th>
<th>Jaderberg '20</th>
<th>Yao '21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4 qubits)</td>
<td>1 (4 qubits)</td>
<td>1 (4 qubits)</td>
<td>1 (4 qubits)</td>
<td></td>
</tr>
</tbody>
</table>

TA, Lee, Kotliar '17
Step 2/2: pick the right ansatz

Goal: compute \(\langle \psi_{GS} | c_i f_j^+ | \psi_{GS} \rangle \) with VQE. How to choose the ansatz \(|\psi_{\theta} \rangle \)?

Key requirement: “expressivity”

- **Gold standard: Unitary coupled-cluster (UCC)**

 \[
 |\text{UCCSD}\rangle = e^{T - T^+} |HF\rangle
 \]

 with cluster operator

 \[
 T = \sum_{i \in \text{occ}, a \in \text{virt}} \theta_i^a c_a^+ c_i + \sum_{i > j \in \text{occ}, a > b \in \text{virt}} \theta_{ij}^{ab} c_a^+ c_b^+ c_i c_j
 \]

 Issue: too many terms, too deep (long) circuit!

- **A shallower ansatz: the Low-Depth Circuit Ansatz (LDCA)**

 Dallaire-Demers et al ’20

 Key insight:

 - pick mostly “Gaussian operations” (\(c_a^+ c_i \) terms) that create single-Slater determinant states
 - ... and few selected non-Gaussian (\(c_a^+ c_b^+ c_i c_j \)) terms to include correlations (\(\sim \) multi reference)

 Issue: still too deep!
Step 2/2: pick the right ansatz

Our ansatz: the Multi-Reference Excitation-Preserving (MREP) ansatz

Start from multi-reference state
Spread fermionic excitations

How to read such a circuit?

One line (qubit): one orbital
("Jordan-Wigner" fermion-qubit mapping)

- After X gates: state $|00001111\rangle$: single Slater det.
- After MR pattern: MR state $\alpha |00001111\rangle + \beta |11001100\rangle + \gamma |00110011\rangle + \delta |10101010\rangle$
- Action of "fSim" gate: $|01\rangle$ becomes $u|01\rangle + v|10\rangle$ (and dephase $|11\rangle$)

Cf Sugisaki ‘19: circuits for molecules with diradical character
Intermezzo: Demo
Beyond VQE with the natural orbitalization procedure
The failure of plain-vanilla VQE

- RISB embedding with MREP ansatz in VQE
 - Sanity check:
 without noise, works
 - With noise... no convergence!
 (too far from true impurity ground state)

- How to overcome this limitation?
 - Key idea: use freedom in choice of orbital basis
The role of the orbital basis

- Goal: minimize \(\langle \psi_{\tilde{\theta}} | H | \psi_{\tilde{\theta}} \rangle \).
- \(|\psi_{\tilde{\theta}} \rangle \) and \(H \): expressed in a given orbital basis. E.g:

\[
H = \sum_{p,q} h_{pq} c_p^+ c_q + \frac{1}{2} \sum_{p,q,r,s} h_{pqrs} c_p^+ c_q^+ c_r c_s
\]

where \(c_p^+ \) creates electron in orbital \(\phi_p(r) \).

- We can freely change basis:

\[
\tilde{c}_p^+ = \sum_q U_{pq} c_q^+
\]

- Equivalent \(|\psi_{\tilde{\theta}} \rangle \) and \(H \)!

- **How to exploit this freedom?**
 Although equivalent, different bases: more or less sparse representations

- E.g state \(|11 \rangle \) in \(c_0^+, c_1^+ \) basis
 ... becomes...

\[
\text{state } \frac{|00\rangle - |01\rangle + |10\rangle - |11\rangle}{2}
\]

in rotated basis:

- \(\tilde{c}_0^+ = (c_0^+ + c_1^+)/\sqrt{2} \)
- \(\tilde{c}_1^+ = (c_0^+ - c_1^+)/\sqrt{2} \)

- Different overhead to prepare on QC!
Aside: Hartree-Fock on a quantum computer

Arute et al, 2020

- Goal: rotate to “molecular-orbital” basis (orbital basis that minimizes energy of a single Slater determinant)

- Circuit:

- Accurate measured energies (not shown here)... w.r.t HF on classical computer...

- But... if rotation to MO basis on classical computer (instead of QC):
 - circuit would have been trivial!
 (a single Slater determinant: only a few X gates!)

- Orbital rotations: easy for classical computers... and potentially harmful on QCs!
 - Can we go (classically) to the “optimal” orbital basis?
Optimizing the orbital basis: Natural orbitals

▶ Natural orbitals (NOs): basis that diagonalizes the one-particle density matrix $D_{ij} = \langle \psi_{GS} | c_i^\dagger c_j | \psi_{GS} \rangle$

“Basis in which GS can be written with the least number of Slater determinants”

▶ Hence, basis in which preparation circuit should be the shortest!

▶ Comparison of original vs NO basis

NO leads to faster+more accurate convergence

On orbital optimization: see also Saad’s talk
In practice: iterative construction

- In practice:
 - the ground state $|\psi_{GS}\rangle$ is unknown
 - so the NO basis is unknown!

- Iterative procedure: “NOization”
 - Compute RDM for current approximation
 - Rotate to approximate NO basis
 - Repeat until convergence
NOization: results

- Iterative procedure converges to exact NO energy

- Noise-free case:
 - Ansatz reaches exact energy for \(U = 0 \) and \(U = 1 \)
 - Good (but not perfect) for \(U = 2 \)

- Noisy case
 - Bias is reduced by NOization
Putting everything together: self-consistent embedding loop

- Half-filled, paramagnetic phase of Hubbard model:
 Upon increasing interaction U, expect “Mott transition” (see David’s talk)

- Embedding: Rotationally-Invariant Slave Boson:
 - $N_c = 2$ (2 impurities, 2 bath sites: 8 qubits)
 - Solved by minimization procedure
- MREP ansatz

- **Realistic noisy simulations on Atos QLM:**
 - Depolarizing gate noise
 - Noise level to reproduce gate error rates: 0.6% (2-qubit gates), 0.16% (1-qubit gates).
Final results

Quasiparticle weight $Z = R^+ R$

$$\Sigma(\omega) = \omega (I - (R^+ R)^{-1}) + R^{-1} \lambda (R^+)^{-1}$$

Static self-energy λ

$$\bar{\lambda} = \lambda - \epsilon_{\text{loc}}$$
Conclusion

▶ Classical preprocessing matters
 – Embedding
 – NOization
 – VQE

▶ Algorithms for NISQ must be tested under noisy conditions
 – Noisy simulation on QLM

▶ NOization:
 – Here, used for impurity model... behavior for quantum chemistry problems?
 – With analog quantum simulators?
 (Variational Quantum Simulation, Kokail '19)
Thank you

thomas.ayral@atos.net