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ABSTRACT: Predicting and understanding the chemical bond is
one of the major challenges of computational quantum chemistry.
Kohn−Sham density functional theory (KS-DFT) is the most
common method, but approximate density functionals may not be
able to describe systems where multiple electronic configurations
are equally important. Multiconfigurational wave functions, on the
other hand, can provide a detailed understanding of the electronic
structures and chemical bonds of such systems. In the complete
active space self-consistent field (CASSCF) method, one performs
a full configuration interaction calculation in an active space
consisting of active electrons and active orbitals. However,
CASSCF and its variants require the selection of these active
spaces. This choice is not black box; it requires significant
experience and testing by the user, and thus active space methods are not considered particularly user-friendly and are employed
only by a minority of quantum chemists. Our goal is to popularize these methods by making it easier to make good active space
choices. We present a machine learning protocol that performs an automated selection of active spaces for chemical bond
dissociation calculations of main group diatomic molecules. The protocol shows high prediction performance for a given target
system as long as a properly correlated system is chosen for training. Good active spaces are correctly predicted with a considerably
better success rate than random guess (larger than 80% precision for most systems studied). Our automated machine learning
protocol shows that a “black-box” mode is possible for facilitating and accelerating the large-scale calculations on multireference
systems where single-reference methods such as KS-DFT cannot be applied.

■ INTRODUCTION
A wide range of advancements have been provided by
chemistry over the past several decades, especially through
materials discovery,1−3 but many of the most important
discoveries have benefited from an irreplicable degree of luck.4

Meanwhile, chemistry is faced with increasing challenges such
as renewable energy production and storage, and these
challenges are only growing in urgency.2,4−7 It has therefore
been proposed that automated processes for materials
discovery could enable large-scale systematic exploration of
chemical space without requiring extensive effort by human
researchers at each step.1−4,6−8 Such automation requires
advances in human−computer interfacing, robotic synthesis,
and artificial-intelligence-driven theory.1,2,5−8

With regard to theoretical developments, efforts are ongoing
to use machine learning (ML) to enhance computational
chemistry,3,9−22 in order to predict the results of many
calculations without having to perform more than a few
explicitly1,2,23−31 or obtain high-level results with inexpensive
methods.23,30−42 In most cases a significant degree of
computational effort is required to obtain necessary training

data, and it has been repeatedly noted in the literature that one
of the bottlenecks in progress toward generally applicable or
automated machine learning is the insufficiency of current
databases.2,4,5,23,30,34,43 While large sets of computational
results have been compiled, they have often been performed
under different conditions and for different applications, which
limits their use in more general applications.2,4,5 The
immediate solution, generating large sets of consistent data,
would require the performance of many calculations in a
systematic (preferably automated) fashion.3,30 In the long
term, hopes of efficiently exploring extremely large sections of
chemical space depend on the ability to automatically set up
artificial intelligence protocols on the fly,1,4,13 including
automatically generating additional training data as
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ABSTRACT: We use artificial neural networks (ANNs) based on
the Boltzmann machine (BM) architectures as an encoder of ab
initio molecular many-electron wave functions represented with the
complete active space configuration interaction (CAS-CI) model.
As first introduced by the work of Carleo and Troyer for physical
systems, the coefficients of the electronic configurations in the CI
expansion are parametrized with the BMs as a function of their
occupancies that act as descriptors. This ANN-based wave function
ansatz is referred to as the neural-network quantum state (NQS).
The machine learning is used for training the BMs in terms of
finding a variationally optimal form of the ground-state wave
function on the basis of the energy minimization. It is relevant to reinforcement learning and does not use any reference data nor
prior knowledge of the wave function, while the Hamiltonian is given based on a user-specified chemical structure in the first-
principles manner. Carleo and Troyer used the restricted Boltzmann machine (RBM), which has hidden units, for the neural
network architecture of NQS, while, in this study, we further introduce its replacement with the BM that has only visible units but
with different orders of connectivity. For this hidden-node free BM, the second- and third-order BMs based on quadratic and cubic
energy functions, respectively, were implemented. We denote these second- and third-order BMs as BM2 and BM3, respectively.
The pilot implementation of the NQS solver into an exact diagonalization module of the quantum chemistry program was made to
assess the capability of variants of the BM-based NQS. The test calculations were performed by determining the CAS-CI wave
functions of illustrative molecular systems, indocyanine green, and dinitrogen dissociation. The simulated energies have been shown
to converge to CAS-CI energy in most cases by improving RBM with an increasing number of hidden nodes. BM3 systematically
yields lower energies than BM2, reproducing the CAS-CI energies of dinitrogen across potential energy curves within an error of 50
μEh.

1. INTRODUCTION
Recent advances in machine learning (ML) and its versatility
have led to a wide range of promising applications in chemical
science from reaction prediction, drug discovery, and syntheses
planning1−3 to ab initio determination of force field parameters,
and prediction of adaptive basis sets in large-scale DFT
calculations.4,5 In the physics community, the potential
applicability of the ML algorithms has been investigated as an
alternative approach to tackle the compression problem related
to quantum many-body systems.6,7 Due to its strong ability to
compress information and extract features from large data
quantities, artificial neural networks (ANNs) have recently
become the subject of active research in condensed matter
physics and quantum information.8−10

In the seminal work by Carleo and Troyer, an ANN model
based on the restricted Boltzmann machine (RBM) was
introduced as a method of exact diagonalization, in which it
serves as a representation of the many-electron wave function,11

hereafter referred to as the neural-network quantum state
(NQS). The RBM is a type of generative model capable of
reproducing the probability distribution over some data of

unknown probability distribution. Without prior knowledge of
the exact particle distribution, Carleo and Troyer designed a
reinforcement learning algorithm for learning optimal network
parameters that give the best possible representations of ground
states of many-body quantum systems or associated strong
correlation in a variational manner given the Hamiltonian. This
approach can achieve accurate results for physical systems of
both one and two dimensions modeling networks of strongly
interacting spins or Fermions. Further investigations have
demonstrated an intimate relation between RBM and other 2-
dimensional tensor-network or strongly correlated states, hence
RBM’s ability to account for higher-dimensional systems,
beyond a 1D capacity of the matrix product state (MPS)
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Nonadiabatic Excited-State Dynamics with Machine Learning
Pavlo O. Dral,*,† Mario Barbatti,*,‡ and Walter Thiel*,†
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ABSTRACT: We show that machine learning (ML) can be used to accurately reproduce
nonadiabatic excited-state dynamics with decoherence-corrected fewest switches surface
hopping in a 1-D model system. We propose to use ML to significantly reduce the
simulation time of realistic, high-dimensional systems with good reproduction of
observables obtained from reference simulations. Our approach is based on creating
approximate ML potentials for each adiabatic state using a small number of training
points. We investigate the feasibility of this approach by using adiabatic spin-boson
Hamiltonian models of various dimensions as reference methods.

Excited-state dynamics simulations of molecules and
molecular assemblies are as important as challenging.

Some of the primary processes in nature (photosynthesis, light
detection), medicine (phototherapy, DNA damage), and
technology (photovoltaics, photonics) have at least one
photoinduced reaction step occurring in the excited state.1−3

The main difficulties in modeling these processes arise from
the intricacies of excited-state electronic structure and from the
intrinsic nonadiabaticity caused by the coupling between
nuclear and electronic degrees of freedom driving the time
evolution.
Significant advances in the simulation of nonadiabatic

dynamics in excited states have been achieved in recent
years.4 The development of on-the-fly nonadiabatic mixed
quantum-classical (NA-MQC) strategies, in particular, has
boosted the research field in the past decade, allowing full-
dimensional simulations of systems with tens of atoms for
several picoseconds. In these methods, nonadiabatic phenom-
ena are introduced into a classical ensemble of trajectories
through averaging, spawning, or hopping of quantum
electronic information. At the same time, they rely on a local
approximation, allowing for the computation of electronic
properties only at the classical nuclear coordinates.
The on-the-fly strategy is a fundamental advantage because

it avoids the costly calculation of multidimensional potential
energy surfaces (PESs), a task that is the main bottleneck in
full quantum approaches. However, the on-the-fly propagation
of the dynamics is computationally demanding because
expensive quantum mechanical (QM) quantitiesenergies,
forces, and couplings between the electronic statesmust be
computed at each time step in the numerical integration of the
equations of motion. Consequently, an on-the-fly NA-MQC
simulation of a medium-sized molecule for several picoseconds

may require hundreds of thousands of CPU hours when using
first-principles QM methods.
The emergence of machine learning (ML) algorithms has

the potential to change this scenario, ideally leading to
situations where ML inexpensively predicts excited-state
energies, forces, and couplings for on-the-fly NA-MQC
dynamics. Encouragingly, ML has already been successfully
applied in many atomistic simulations, for example, to
represent PESs, to perform molecular dynamics in the ground
state, and to predict excited-state properties.5−22 However, the
application of ML to on-the-fly NA-MQC dynamics poses
unique challenges. Among the most crucial problems is the
higher complexity of the excited-state electronic structure,
often leading to a high density of coupled states, with a
strongly anharmonic dependence on nuclear coordinates.
Moreover, in many cases, the nonadiabatic processes happen
on time scales shorter than those of thermal equilibration,
requiring the propagation of microcanonical rather than
canonical ensembles, which are associated with much stricter
conservation requirements.
Only few recent studies have attempted to use ML for such

purposes. In a pilot study of ML-enhanced NA-MQC
dynamics, ML was used only for the representation of the
relevant PESs; however, the generation of training points was
rather tedious and time-consuming, whereas the number of
QM calculations performed during the training of the ML
models and during the dynamics was close to the number of
QM calculations typically required for a corresponding on-the-
fly QM simulation.6 In another study, the accuracy of direct
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ABSTRACT: X-ray spectroscopy delivers strong impact across
the physical and biological sciences by providing end users with
highly detailed information about the electronic and geometric
structure of matter. To decode this information in challenging
cases, e.g., in operando catalysts, batteries, and temporally evolving
systems, advanced theoretical calculations are necessary. The
complexity and resource requirements often render these out of
reach for end users, and therefore, the data are often not
interpreted exhaustively, leaving a wealth of valuable information
unexploited. In this paper, we introduce supervised machine
learning of X-ray absorption spectra through the development of a
deep neural network (DNN) that is able to estimate Fe K-edge X-
ray absorption near-edge structure spectra in less than a second with no input beyond geometric information about the local
environment of the absorption site. We predict peak positions with sub-eV accuracy and peak intensities with errors over an order of
magnitude smaller than the spectral variations that the model is engineered to capture. The performance of the DNN is promising,
as illustrated by its application to the structural refinement of tris(bipyridine)iron(II) and nitrosylmyoglobin, but also highlights
areas on which future developments should focus.

■ INTRODUCTION
The emergence of high-brilliance light sources, such as third-
generation synchrotrons and fourth-generation X-ray free-
electron lasers (XFELs), has transformed X-ray absorption
spectroscopy (XAS).1 It is now possible to acquire high-
resolution XAS spectra under the most challenging operating
conditions; examples include in operando catalysts2 and
batteries.3 In addition, one can also follow ultrafast excited-
state dynamics in real time by exploiting ultrashort X-ray pulses
generated by XFELs.4,5 The unprecedented level of detail in
modern XAS spectra, coupled with ever-increasing data
acquisition rates, brings into focus the acute challenge of
accurately and efficiently analyzing these data to access the
quantitative electronic and geometric structural information
encoded into each XAS spectrum.
To access the information encoded into the X-ray

absorption near-edge structure (XANES) region of an XAS
spectrum, high-level theoretical calculations are necessary to
capture the complexity of the underlying physics.6 In
amorphous materials and those under nonequilibrium
conditions, e.g., in operando measurements and time-resolved
experiments, performing the large number of theoretical
calculations required to analyze the data is often precluded
by their individual complexity. Indeed, accounting for
contributions from all absorption sites in an amorphous
material is time-consuming and resource-intensive; the

challenge is compounded when the contributions change as
a function of time. In lieu of an alternative, the status quo is to
interpret the XANES spectrum superficially using semi-
empirical heuristics for estimating changes in geometry,7

symmetry,8 and oxidation state9 at the absorption site. At
best, a valuable scientific resource is not exploited to its fullest
potential if the XANES spectra cannot be interpreted
exhaustively; at worst, the status quo leaves the data open to
the danger of misinterpretation.
Although the underlying physics connecting the XANES

observables to the geometric structure of a material is complex
and challenging to simulate efficiently, it is well-understood.
Modulations in the absorption cross section just above the
absorption edge are a consequence of multiple scattering of
low-kinetic-energy photoelectrons by atoms neighboring the
absorbing atom.10 It is therefore possible to develop models for
the refinement of the local geometric structure around the
absorption site and fit the XANES data, as successfully
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How machine learning can assist the interpretation
of ab initio molecular dynamics simulations and
conceptual understanding of chemistry†

Florian Häse, a Ignacio Fdez. Galván, b Alán Aspuru-Guzik, cde Roland Lindh b

and Morgane Vacher *b

Molecular dynamics simulations are often key to the understanding of the mechanism, rate and yield of

chemical reactions. One current challenge is the in-depth analysis of the large amount of data produced

by the simulations, in order to produce valuable insight and general trends. In the present study, we

propose to employ recent machine learning analysis tools to extract relevant information from

simulation data without a priori knowledge on chemical reactions. This is demonstrated by training

machine learning models to predict directly a specific outcome quantity of ab initio molecular dynamics

simulations – the timescale of the decomposition of 1,2-dioxetane. The machine learning models

accurately reproduce the dissociation time of the compound. Keeping the aim of gaining physical

insight, it is demonstrated that, in order to make accurate predictions, the models evidence empirical

rules that are, today, part of the common chemical knowledge. This opens the way for conceptual

breakthroughs in chemistry where machine analysis would provide a source of inspiration to humans.

1 Introduction
Computer simulations are a key complement to experiments in
the laboratory, especially when the latter are expensive or
challenging because of extreme conditions required. Simula-
tions also provide much greater details of a molecular process
than can be observed experimentally. For instance, studying the
time evolution of matter with molecular dynamics simulations
is essential for understanding the mechanism, rate and yield of

chemical reactions. Such simulations are also necessary to
complement experiments and connect with time-resolved
pump-probe measurements. At each time step of an ab initio
molecular dynamics simulation, the energies and forces felt by
the nuclei are calculated “on-the-y” with an electronic struc-
ture method. With the growing complexity of the investigated
chemical problems and the increasing need for improved
accuracy, molecular dynamics simulations become very time-
consuming. Typical time and length scales that are accessible
with ab initio molecular dynamics are, with current computer
systems, up to hundreds of femtoseconds (fs) to tens of pico-
seconds, and tens to few hundreds of atoms. As simulations
become more complex, their usefulness for guidance and
understanding may become obscured. Simple lessons are oen
lost among gigabytes or terabytes of data. The present work
proposes to use machine learning methods to aid the inter-
pretation of molecular dynamics simulations. The bigger goal
here is in the future to allow machines to provide a source of
inspiration to humans for the elaboration of new concepts in
chemistry. This has been identied by some of us as one of the
six grand challenges for the simulation of matter in the 21st
century1 and the present work demonstrates an approach for
achieving this.

As a test application, the timescale of the chemiluminescent
decomposition of 1,2-dioxetane is chosen (Fig. 1A). Chem-
iluminescence is the emission of light as a result of a chemical
reaction. This process is called bioluminescence when occurring
in living organisms as in the well-known example of the rey. For
a recent review on the topic, see ref. 2 and 3. Chemiluminescence

aDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge,
Massachusetts 02138, USA
bDepartment of Chemistry – Ångström, The Theoretical Chemistry Programme,
Uppsala University, Box 538, 751 21 Uppsala, Sweden. E-mail: morgane.vacher@
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cDepartment of Chemistry and Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3H6, Canada
dVector Institute for Articial Intelligence, Toronto, Ontario, M5S 1M1, Canada
eCanadian Institute for Advanced Research (CIFAR), Senior Fellow, Toronto, Ontario,
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† Electronic supplementary information (ESI) available: Brief introduction to PCA.
Further details on the implementation of the BNN models and on the
hyperparameters optimisation including the scanned hyperparameter and
obtained performances of different BNN architectures. Analysis of the BNN
performance with the training set size. Predictions of dissociation half-times for
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Transition state structure and normal modes of the unmethylated
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Florian Häse,1,2,3,4 Ignacio Fdez. Galván,5 Alán Aspuru-Guzik,2,3,4,6

Roland Lindh5 and Morgane Vacher7

1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138,
USA
2 Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
3 Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
4 Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
5 Department of Chemistry – BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
6 Canadian Institute for Advanced Research (CIFAR) Senior Fellow, Toronto, ON M5S 1M1,
Canada
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Abstract. Post-calculation analyses are often required to extract physical insights from ab
initio molecular dynamics simulations. In the present work, we use different machine learning
classifiers to take a new perspective on the decomposition reaction of dioxetane. Upon thermally
activated decomposition, dioxetane can form products in an electronically excited state and can
thus chemiluminesce. Simulated dynamics trajectories exhibit both successful and frustrated
dissociations. As an exhaustive and systematic study of the decomposition mechanism “by
hand” is beyond feasibility, machine learning models have been employed to study the relevant
nuclear distortions governing molecular dissociation. According to all classifiers used in the
study, the two sets of geometries differ by the in-phase planarisation of the two formaldehyde
moieties. New insights are obtained from this analysis: if both moieties are not planar
enough when the dissociation is attempted, it is frustrated and the molecule remains trapped.
The postponing of the decomposition reaction by the so-called entropic trap enhances the
chemiexcitation efficiency.

1. Introduction
Ab initio molecular dynamics simulations provide a complete picture of the evolution of the
electrons and the nuclei along a chemical reaction. However, post-calculation analyses are often
required to understand why a molecule reacts the way it does [1, 2, 3]. Recently, we have studied
the thermally-activated decomposition of dioxetane [4, 5, 1]. The reaction occurs in two steps
leading to two formaldehyde fragments: first the O–O bond breaks and then the C–C bond
breaks (Figure 1). This reaction is responsible for the non-adiabatic population of electronic
excited states, a process called chemiexcitation [6, 7]. The subsequent radiative relaxation is
called chemiluminescence, or bioluminescence when occurring in living organisms [8].

It was suggested that an “entropic trap” regulates the outcome of the dissociation (instead
of a transition state) [9]. By delaying the exothermic ground-state dissociation, the entropic
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electrons and the nuclei along a chemical reaction. However, post-calculation analyses are often
required to understand why a molecule reacts the way it does [1, 2, 3]. Recently, we have studied
the thermally-activated decomposition of dioxetane [4, 5, 1]. The reaction occurs in two steps
leading to two formaldehyde fragments: first the O–O bond breaks and then the C–C bond
breaks (Figure 1). This reaction is responsible for the non-adiabatic population of electronic
excited states, a process called chemiexcitation [6, 7]. The subsequent radiative relaxation is
called chemiluminescence, or bioluminescence when occurring in living organisms [8].

It was suggested that an “entropic trap” regulates the outcome of the dissociation (instead
of a transition state) [9]. By delaying the exothermic ground-state dissociation, the entropic

Can we use machine learning 
algorithms to help the 

interpretation of AIMD simulations 
and to extract physical insights?
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intersection

emission 
of light

product

reactant

What is chemiluminescence?

Chemiexcitation
Population of an excited state as the result of a chemical reaction

Definition: Emission of light (luminescence) as the result of a chemical reaction



➜ Communication to attract partners, 
hunting to lure preys, defence to 
avoid predators

What is chemiluminescence?

➜ In vivo imaging in medicine, 
biosensing for environmental polluants, 
food industry, etc.

Vacher et al, Chem. Rev. 118, 6927-6974 (2018)

DOI: 10.1002/cphc.201100504

The Chemistry of Bioluminescence: An Analysis of
Chemical Functionalities
Isabelle Navizet,*[a] Ya-Jun Liu,[b] Nicolas Ferr!,[c] Daniel Roca-Sanju"n,[d] and Roland Lindh[d]

3064 # 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 2011, 12, 3064 – 3076

Structures of model compounds



1 2

34

a: R1 = R2 = R3 = R4 = H
b: R1 = Me; R2 = R3 = R4 = H
c: R1 = R4 = Me; R2 = R3 = H
d: R1 = R2 = R3 = Me; R4 = H
e: R1 = R2 = R3 = R4 = Me

Decomposition into fundamental or 
excited formaldehyde molecules

          Adam et al, J. Am. Chem. Soc., 107,410-416 (1985)

➜ Increase in the chemiexcitation yield upon methyl substitution ?

Chemiexcitation in 1,2-dioxetane

➜ Yield of triplet excited states > yield of singlet excited sates ✔

Vacher et al, J. Phys. Chem. Letters, 8 , 3790-3794 (2017)



Theoretical approach

Initial conditions
- Transition state geometry with 1kcal/mol kinetic energy in the forward direction 
- 150 trajectories sampled from the Wigner distribution (Newton-X package)

Electronic structure method
- CASSCF(12-in-10) 
- ANO-RCC-VTZP basis set

Ab initio molecular dynamics simulations
- Born-Oppenheimer dynamics 
- non-adiabatic dynamics (surface hopping) 

including 4 singlet states

Vacher et al, J. Chem. Theory Comput., 13 (6), 2448-2457 (2017)
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Dissociation of 1,2-dioxetane
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b

d
(a) (c) (d) (e)

t=37.3 fs t=65.3 fs t=104.5 fs t=120.0 fst=0 fs

(b)
a

 O-C-C angle < 117°
O-C-C-O dihedral > 55°

➜ Geometrical conditions necessary

➜ Dissociation time scale
between t = 25 fs and t = 140 fs 
half-time of 59 fs

Dissociation of 1,2-dioxetane



entropic trap

S ↔ T

Vacher et al, J. Phys. Chem. Letters, 8 , 3790-3794 (2017)

➜ The longer the system stays in the 
entropic trap, the more population is 
transferred from S to T and the higher 
the chemiexcitation yield is.

Effect of methyl substitution

Figure 5: Simple kinetic model fitting the experimental12 triplet excitation yield � and the
calculated dissociation half-life t1/2 using adiabatic ground state dynamics simulations (bar)
or non-adiabatic surface hopping dynamics simulations (cross), for the compounds a (red),
b (yellow), c (green), d (blue) and e (purple). The dashed lines correspond to the analytical
expression t1/2 = t0� ln(1�4�/3)

4k where the parameters t0 and k were fitted to the data, taking
into account the experimental error bars: t0 = 58 fs and k = 0.0027 fs�1 for ground state,
and t0 = 74 fs and k = 0.0033 fs�1 for surface hopping calculations.

over the five ensembles of 110 surface hopping trajectories was observed to dissociate on the

singlet excited state. This is expected from the extremely low measured singlet excitation

and fluorescence yields in 1,2-dioxetanes decomposition.12

Slower dissociation means longer time spent in the entropic trap region, where the man-

ifold of singlet states lies close in energy to the manifold of triplet states. This is where

transfer of population between the singlet ground state and the triplet manifold occurs. Be-

fore reaching equilibrium among the degenerate electronic states, dark decomposition occurs

on the ground state and interrupts the net transfer of population to the triplet states. The

longer the system stays in the entropic trap, the more population is transferred from the

singlet ground state to the triplet states and the higher the chemiluminescence yield is. A

simple kinetic model has been proposed and tested by fitting the calculated dissociation

half-lives to the experimental chemiluminescence yields. It explains with accessible concepts

the increase of the chemiluminescence yield upon methyl substitution.

The findings of the present work finally bring insights into chemiluminescence yields, and

the substantial increase upon methylation. In particular, it demonstrates how substituents,

11

# methyl groups 
a: 0, b: 1, c: 2, 

d: 3, e: 4
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S ↔ T

# methyl groups 
a: 0, b: 1, c: 2, 

d: 3, e: 4



BNN1:
initial nuclear 

geometry

BNN2:
+ nuclear 
velocities

dissociation time

4 layers of 130 neurons
Activation function: Leaky ReLU

Häse, Fdez Galván, Aspuru-Guzik, Lindh and Vacher, Chem. Science, 10, 2298-2307 (2019)

Prediction of dissociation time
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➜ Accurate predictions of the dissociation times of 1,2-dioxetane

Häse, Fdez Galván, Aspuru-Guzik, Lindh and Vacher, Chem. Science, 10, 2298-2307 (2019)

Prediction of dissociation time
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Analysis of the trained BNN 1
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❖ Predictions of dissociation times 
for vibrational excited states

Häse, Fdez Galván, Aspuru-Guzik, Lindh and Vacher, Chem. Science, 10, 2298-2307 (2019)

Analysis of the trained BNN 2

Ensemble 8 11 4 3

Nfrus 1.08 1.17 1.18 1.52



➜ Correlation between nuclear coordinates and dissociation times
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… related to empirical rules known today as: 
- octet rule 
- relation between bond order and bond length 
- orbital hybridisation / valence shell electron pair repulsion (VSEPR) model

Häse, Fdez Galván, Aspuru-Guzik, Lindh and Vacher, Chem. Science, 10, 2298-2307 (2019)

Interpretation of the trained BNN

This is chemistry !
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b

d
(a) (c) (d) (e)

t=37.3 fs t=65.3 fs t=104.5 fs t=120.0 fst=0 fs

(b)
a

 O-C-C angle < 117°
O-C-C-O dihedral > 55°

➜ Dissociation time scale
between t = 25 fs and t = 140 fs 
half-time of 59 fs

➜ Geometrical conditions necessary

“Frustrated” dissociations



(a) (b)

(c) (d)

SVM (linear kernel) coordinate

“Frustrated” dissociations - revisited

Häse, Fdez Galván, Aspuru-Guzik, Lindh and Vacher, J. Phys. Conf. Series, 1412, 042003 (2020)

KS = Kolmogorov–Smirnov 



“Frustrated” dissociations - revisited

Häse, Fdez Galván, Aspuru-Guzik, Lindh and Vacher, J. Phys. Conf. Series, 1412, 042003 (2020)

Three different standard machine learning classifiers: 

- linear discriminant analysis (LDA) 
- linear support vector classification (SVC) 
- support vector machines (SVM) with a linear kernel



(a) (b)

(c) (d)

SVM (linear kernel) coordinate

“Frustrated” dissociations - revisited

Häse, Fdez Galván, Aspuru-Guzik, Lindh and Vacher, J. Phys. Conf. Series, 1412, 042003 (2020)
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(b) (c)

“Frustrated” dissociations - revisited

Häse, Fdez Galván, Aspuru-Guzik, Lindh and Vacher, J. Phys. Conf. Series, 1412, 042003 (2020)

(a)

(b) (c)



(a)

(b) (c)

“Frustrated” dissociations - revisited

➜ In-phase planarisation motion 
of the two formaldehyde moieties

Häse, Fdez Galván, Aspuru-Guzik, Lindh and Vacher, J. Phys. Conf. Series, 1412, 042003 (2020)



❖ Ab initio molecular dynamics simulations are necessary to provide 
details into the mechanisms and yields of photochemical reactions. 

❖ Machine learning algorithms are able to predict accurately a specific 
outcome quantity of AIMD simulations. In order to make accurate 
predictions, the models evidence empirical rules that are, today, part of 
the common chemical knowledge. 

❖ Machine learning techniques are also helpful to analyse and further 
interpret the results produced by the AIMD simulations. 

❖ This paves the way for new conceptual insights in chemistry where 
machine analysis would provide a source of inspiration for us.

Take home messages
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