Replacing Chemical Intuition:
Design of Experiments and Reinforcement Learning
For the Construction of Training Sets
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Machine Learning is Data Intensive

< More = Better >
Everything Nothing left
computed? for production

Machine
Sample Learning Feature
selection? selection?
Training

set
||: i @erpolatio@ < Extrapolations _>




Training Set Determination: Two Possibilities

Case 1: Maximum data set is available

« Maximize interpolation capabilities for given n.

—> Create most representative subsample

Case 2: Data set has to be created
» Data generation is expensive = Compress as much as possible

« Maximize interpolations > Focus on most relevant features
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Case 1: Maximum Data Set Available
Random Sampling

Advantages
» Easy
e Unbiased

« Sample size can be converged easily

Disadvantages

* No link with interpolation power

—> Converges slowly (large sample sizes needed)
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Case 1: Maximum Data Set Available ey %

Orthogonal Latin Hypercube Sampling

Advantages Bo00® O
g OO 2.@0%3 o S
* Increased diversity g cz; og% o®
O O
-> Small samples can be representative Q)O. EgD%QO%QOO
O Qa) ® (@9
o° @Q)@ O

Disadvantages
« Sample size cannot be increased continously

» Feature space has to be defined, but no knowledge of important regions
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Case 1: Maximum Data Set Available
Design of Experiments (DoE)

Advantages
 Increased diversity compared to random; particularly well suited for interpolations
—> Small samples can still be representative

«  Systematic construction

Disadvantages %0 o%e® &
O OO(DO @ Cg

» Feature space has to be defined 8° o o, 3
Po 20 G

 No knowledge of important regions o0 8.65°°
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Case ’|: Maximum Data Set Ava”able Cersonsky et al Mach. Leam.: Sci. Technol. 2021, 2, 035038.
Farthest Point Sampling
Advantages

 Increased diversity compared to random; particularly well suited for interpolations

—> Small samples can still be representative

» Fast convergence, sample size can be increased continuously

Disadvantages

» Feature space has to be defined

» No knowledge of important regions, but tweaks exist
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Case 2: De Novo Training Set Construction
Choose the fewest representative samples

Enumerate Explore
randomly

D

Apply methods
to generated
samples, before
expensive
computation



Case 2: De Novo Training Set Construction
Main idea: Learn and Construct on the Fly

» Construction is expensive

—> Construct as little as possible

»  Which datapoints are necessary to improve model robustness?

. @trapolahorD—)@erpolatloD
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(Active) Reinforcement Learning

» Learn the action patterns that lead to highest reward

| agent | agent
action stone on

ame
Stite LI %ata terrltory (3, 12)

] captured l
interpreter interpreter _I
@ environment @ Q

t t

«  Compromise of exploration (new situations) and exploitation (pursue strategies leading to high

rewards)
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Reinforcement Learning: Examples in Chemistry Afuip etal s Chem. heory Comput 2021, 17, 615

Geometry Optimization

 Input: Gradient and displacement history

* What is the best next step?

« Learn a policy for enhanced optimization step
—> Very successful for organic molecules

No additional computational cost BFGS —— 139

BFGS w Line Search - 93 243
L-BFGS - 129
FIRE - 184

REQ+GDIIS - I 105
94

0 50 100 150 200 250
i Average Number of Steps (-)
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Reinforcement Learning: Examples in Chemistry A andAn . Am Clem. Soc 2021, 145, 16604
Reaction Path Discovery

e Input:
(1) Surface state

(2) Possible reaction steps
(3) Products

*  What is the most likely next
reaction leading towards
products?

T BR s TS TSD  N,H,NH,

[00000000000000000000130]
(e)
s(t), a(t)

{ T 0 Q dbc§i’éjchfgé>lt

Empty: 0 H: 1 N:2 NH: 3 NH,: 4

s(t+1), r(t+1)

e Learn reaction kinetics
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Reinforcement Learning: Examples in Chemistry A enaAn A, Chem. Soe 2021, 45, 16504

Reaction Path Discovery

|dentified the most plausible (lowest energy)
pathway for Haber-Bosch process on Fe(111):

Order of adsorption/desorption!
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Reinforcement Learning: Examples in Chemistry

ML Potentials

Perfect \ d
Crystal i
: 2 Rigid
a/@“ Displacement
» Deep Neural Networks have several local minima Volume %’
«  Train an ensemble of DNNs together ) @wc
Random

Perturbation y

Y

Random
Alloy, displaced

» Use ensemble to make predictions

1000 1500 2000  T[K]

500

=

Zhang et al Phys. Rev. Materials 2019, 3, 023804.

(a) Exploration

To Be
Explored

Current
Iteration

Iteration Index

Largest deviations? 5 @2) = vay
Alloy, bulk1hit, Structure DPMD Sampler
- Add training data Model *Unlabeled
Ensemble @ Data

(c) Trammg

Data

RIR0E B <R
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Reinforcement Learning: Examples in Chemistry ~ Snoset@ Chem Mooy Comput 2021, 17,5462

Approaching Full Configuration Interaction
* Input:

(1) Current Slater determinants

(2) Perturbation-based estimates for adding/removing Slater determinants
» What is the ideal combination of Slater Determinants?

» Learn compression of FCI wave function N, Dissociation

1072

2000
5 (b)--- RLCI(@20% SDs)  —s— HCI (e1: 26-03,€,: 2E-03)
o 10°3 17501 --- RLCI(3.0%SDs) —e— HCI (g1: 1E-03,€5: 1E-03)
5 --- RLCI (4.0% SDs)  —e— HCI (g;: 5E-04,&5: 5E-04)
T n
= ‘g 1500 A
310 £
o £ 12501
5 LAy 5
— 4
SRCRS 3 1000
(o]
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O . 6 2 750
= 107° Q
QJ E
2 N 2 s00{/ . Y A YUY AY e
9] 1071 7 RLCI (2.0% SDs) ~ —e— HCI (£1: 2E-03,€: 2E-03) CA A — = — I N P -
g_g --- RLCI(3.0% SDs) —e— HCI (g;: 1E-03,€;: 1E-03) ¢ A
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Reinforcement Learning: Examples in Chemistry

Goings et al J. Chem. Theory Comput. 2021, 17, 5482.

Approaching Full Configuration Interaction

o
N
o

o

—

(6)}
]

Transfer learning is strength of RL

o
—

Learn on one system, adapt knowledge to the next

o
o
o

-> Gain in efficiency and accuracy!

Difference from FCI energy (Hartree)

Adapt kn
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Hg ring

4 =—@— RLCI with transfer
= RLCI

1.2 1.4 1.6

Bond length (A)

Fully learn at 0.9 A (30 iterations)
owledge for other distances (15 iterations)

1.0



Case 2: De Novo Training Set Construction
Active Reinforcement Learning

« Action: Which sample to add to the training set | agent aetion
«  State: Current training set state
Reward I reward
* Reward:
(1) Robustness of fitted model interpreter J
(2) dominating terms best defined @ environment

L =
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Example: Training of Model Hamiltonian
Cluster Expansion Model Hamiltonians

Typical applications Typical case for “one use only” potentials
 Description of alloy (bulks, surfaces, NPs) —> Minimizing computational cost for its production
 Adsorption (and reaction) on surfaces —> We knowingly accept inaccuracies
Desorption By-products B
Reactants
Adsorption/
Migration/
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Example: Training of Model Hamiltonian
What is a Cluster Expansion?

A linear model, mapping configurations (patterns) and energy contributions

—_
w
[
—_
N
(o]
-~

ZBN +Zﬁ b/V—b(g)+Zﬁ —b-cNa-b-c(g) + -

%/_/ NG 7 \
1-body terms 2-body terms 3-body terms

(. 7

VvV
lateral interactions

y = 0.8692x - 4.4903

1-body estimate (eV)

2- and higher body terms matter [

True Energy (eV)
1-body estimate (ev): -12.5 -8 -10.2 -9

. True energy (eV): -8.6 3.7 7.2 6.2
I

-11

-13



Example: Training of Model Hamiltonian

What is a "Good” Training Set?

Dominating strategy Automatically created, better than random

 Construction by hand « Relevant: Better sampling of regions with

«  Exploiting chemical intuition important lateral interactions

User time consuming! » Diverse: Don't miss patterns
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Staub and Steinmann, submitted.

Example: Training of Model Hamiltonian
Cluster Expansion: A board game perspective

Board with cells Points contributions

Surface with active sites Adsorption energy contributions ° Ad SOrbln g one a dS Ol'b ate aft er th e Oth er

| | | ccessible @ @ ° i1 1 ' '

‘T 1) Accessitle | A LA ] Learn positive and negative lateral interactions
[ X 1 X A O |

aEna , * No prior knwoledge

Hlfidel} - + +

| | | contributions

L * Long-term strategy
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UCT: A Typical Reinforcement Learning Approach

Upper Confidence bounds applied to Trees :

Monte Carlo Tree Search

SELECTION EXPANSION RoLLouT BACKPROPAGATION

A

& dbodbdbdodbdedt

Q

Based on previous plays Explore a new possibility Determine the score  Update information
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Auer et al Mach. Learn. 2002, 47, 235.

UCT: A Typical Reinforcement Learning Approach

Upper Confidence bounds applied to Trees :
Monte Carlo Tree Search

SELECTION EXPANSION RoLLOUT BACKPROPAGATION

Combined with Upper Confidence Bounds

Optimal Exploitation/Exploration trade-off
Like in multi-armed bandit problem (e.g., UCB1)

N;: Total plays passing through parent node

w; In V; n;. plays passing through considered node
. iy w;: Wins going through node i
BE CHIMIE ¢: exploration constant; v'2 in theory
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Staub and Steinmann, submitted.

Example: Training of Model Hamiltonian
Particularities when Constructing a Training Set

» UCT is trained by simulating games

 Relies on fast evaluations of the true score

« Here: true score = DFT computation (expensive!)
—> We are actually exploiting the learning period!

—> Accelerate Learning

=> Increasing incentive for exploration (curiosity)
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.o . . ivi , . . 2011, 19, 359.
Example: Training of Model Hamiltonian St and Ssiran, subrid. 5

Tweaks of UCT to the Construction of Training Sets

« \When comparing unseen nodes
—> minimize the variance (A-optimal DoE)

—> Accelerate exploration (curiosity)

» Use KL-UCB as faster converging compared to UCB1

—> Tighter bounds, make exploitation as efficient as possible

B ABoRATOIRE . .
. | I g D CHIMEE Thiede et al. arXiv, 2020, 2012.11293.



Example: Training of Model Hamiltonian

Proof of Principle: Tree

Staub and Steinmann, submitted.

Adsorbate
CcoO NH; +«——— chemical
/ \ type
Surface site
Au Au «+———  chemical
\ \ type
hcc fcc top TyPe of
site
2 4 3 1 . Site
number
None| [None None 0° | 130°| |45°| |60° Aflsorba}te
orientation
Adsorbate
p + + + + + + OTD
chirality

I ENS DE LYON

weorsrore —— (Gompletely general, all kind of surfaces and adsorbates



Example: Training of Model Hamiltonian
Proof of Principle: System

« CO oxidation on Pd(111)
0, CO as adsorbates

« Ternary (fcc and hcp) adsorption sites
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Example: Training of Model Hamiltonian Piccinin et al ACS Catal. 2014, 4, 2143,

Proof of Principle: System

« CO oxidation on Pd(111)

* 0, CO as adsorbates

« Ternary (fcc and hcp) adsorption sites
* Model Hamiltonian

Up to 3-body terms

Up to next-nearest neighbors

Maximum 3 sites involved
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Example' Training of Model Hamiltonian Staub and Steinmann, Appl. Math. Comput. 2021, 399, 125996.

Recursive Least-Squares Solver

» (Active) Reinforcement Learning of a linear problem
—> Update least squares solution instead of recomputing it!

« Exploit rank-deficiency and rank-factorization

Most efficient algorithm and relative margin

At low rank r to row n ratio,

rank-Greville is faster (independent on
row/column ratio, n/m) even for full solution
of the least-squares problem!

0 LABORATOIRE . . .
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Staub and Steinmann, submitted.

Example: Training of Model Hamiltonian
Proof of Principle: Results

—— random sampling
221 ‘ —— DoE sampling
—— UCT+DoE sampling
‘ —— DoE(relevant) sampling
20 \ —— UCT+DoE(relevant) sampling

181

16 A 7.48
_ 6.97 1
14 6.87 1

121 6.42
|

-1y (ev?)

Tr((F T rer)

101

84

giiiic:

5 10 15 20 25 30 35 40
Steps after all relevant contributions can be determined

||l wonsrore. UG T+DOE allow to automatically focus on most relevant features

61
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Conclusions

« Compact, representative training sets for robust interpolations
« Random sampling is a poor strategy for small training sets

 Farthest-point sampling is convenient and robust

» Reinforcement learning is underused in chemistry
Optimization problems are frequent: From geometry to FCI

* (Active) Reinforcement learning for automatic optimal training set construction.
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