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Machine Learning is Data Intensive
More = Better

Everything 
computed?

Nothing left 
for production

Machine 
Learning

ExtrapolationsInterpolations

Sample 
selection?

Feature 
selection?

Training 
set
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Training Set Determination: Two Possibilities
Case 1: Maximum data set is available

• Maximize interpolation capabilities for given n.

Case 2: Data set has to be created

• Data generation is expensive à Compress as much as possible

• Maximize interpolations à Focus on most relevant features

à Create most representative subsample

à Create smallest representative sample
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Random Sampling
Case 1: Maximum Data Set Available

Advantages

• Easy

• Unbiased

• Sample size can be converged easily

Disadvantages

• No link with interpolation power

à Converges slowly (large sample sizes needed)
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Orthogonal Latin Hypercube Sampling
Case 1: Maximum Data Set Available

Advantages

• Increased diversity

à Small samples can be representative

Disadvantages

• Sample size cannot be increased continously

• Feature space has to be defined, but no knowledge of important regions

Tang, J. Am. Stat. Assoc., 1993, 88, 1392.
Loyola, Neural Netw, 2016, 78, 75.



6

Design of Experiments (DoE)
Case 1: Maximum Data Set Available

Advantages

• Increased diversity compared to random; particularly well suited for interpolations

à Small samples can still be representative

• Systematic construction

Disadvantages

• Feature space has to be defined

• No knowledge of important regions

• “Optimal” points might be unphysical
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Farthest Point Sampling 
Case 1: Maximum Data Set Available

Advantages

• Increased diversity compared to random; particularly well suited for interpolations

à Small samples can still be representative

• Fast convergence, sample size can be increased continuously

Disadvantages

• Feature space has to be defined

• No knowledge of important regions, but tweaks exist

Compression of Feature matrix (CUR) works at least as well

Cersonsky et al Mach. Learn.: Sci. Technol. 2021, 2, 035038.
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Choose the fewest representative samples
Case 2: De Novo Training Set Construction

Enumerate Explore 
randomly

Apply methods 
to generated 

samples, before 
expensive 

computation
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Main idea: Learn and Construct on the Fly
Case 2: De Novo Training Set Construction

• Construction is expensive 

à Construct as little as possible

• Which datapoints are necessary to improve model robustness? 

Extrapolations Interpolations!
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(Active) Reinforcement Learning
• Learn the action patterns that lead to highest reward

• Compromise of exploration (new situations) and exploitation (pursue strategies leading to high 
rewards)
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Geometry Optimization
Reinforcement Learning: Examples in Chemistry

• Input: Gradient and displacement history

• What is the best next step?

• Learn a policy for enhanced optimization step

à Very successful for organic molecules 

No additional computational cost

the step predicted by GDIIS. If the GDIIS update differs
in direction and magnitude of the reference step
significantly according to some specified threshold,
then the reference RFO update is used and otherwise
GDIIS is used.

We use the implementations of these algorithms as provided
in the Atomic Simulation Environment (ASE)42 and
Pysisyphus43 (for RFO + GDIIS) packages.

■ RESULTS AND DISCUSSION
Optimizer Benchmarks. As can be seen in Figure 3, the

RL optimizer takes much fewer steps compared to BFGS to

find the local minima for the perturbed geometries. For
unperturbed molecular geometries, i.e., the ones with initial
geometries lying close to the local minima, the RL optimizer
has similar performance as BFGS, which is understandable
since BFGS already performs well when close to local minima,
where the potential energy surface is nearly quadratic.
The RL optimizer also outperforms all other optimizers that

we consider in our experiments as shown in Figure 4, which

summarizes the performance of different optimizers on the
force field test set. We see that in the case of perturbed
geometries (Figure 4a), the RL optimizer on average takes
about 30% fewer steps compared to pure BFGS (94 vs 139
steps). The results also indicate that our method performs very
close to BFGS with line search, but without any additional
function and gradient calls, making our method much more
efficient. Our RL optimizer also outperforms the more
advanced RFO + GDIIS method which takes about 11 steps
more on average for the geometries in our test set. Similar to
our observations in Figure 3, in the case of unperturbed
geometries (Figure 4b), here also we see comparatively smaller
gains over BFGS (87 vs 89 steps) for the same reasons as
mentioned above. However, it does outperform FIRE by a
large margin and again shows similar performance to BFGS w
Line Search without any extra gradient calls.
To show the effectiveness of our model toward optimizing

functions other than what it is trained on, i.e., the force-field-
based environments, we evaluate it on molecular geometries
calculated with the PM7 semiempirical method. Tables 1 and 2
show the number of steps taken by different optimizers for
perturbed and unperturbed geometries of different molecules,
respectively. Similar to results for the force-field geometries, we
observe that our model is able to outperform most optimizers
including BFGS, by a good margin for perturbed geometries. It
also performs competitively with the RFO + GDIIS method
and in most cases can reach the convergence in a fewer steps.
For unperturbed geometries, it takes more or less the same
number of steps as BFGS and L-BFGS, which is also consistent
with the results on force-field test set. These results suggest
that the geometry optimization strategy learned is likely
transferable between PESs calculated at different levels of
theory.
We also evaluate the time taken by different optimizers on

PM7 environments and observe that our RL optimizer in most
cases takes much less computation time compared to other
algorithms. The gains become even more prominent as we
move to molecules with a large number of atoms (taxol and
valinomycin). The exact values of the computation time are
provided in Table S2 in the Supporting Information.
We note that although we are using gradient and

displacement information for geometry optimizations of
molecules, our method is not learning a force field or
molecular geometries or chemistry at all: the state variable
seen by our method does not include any atom identifiers, so
the method does not know if an atom is nitrogen or fluorine.
Our method is a general-purpose improvement to BFGS that
empirically works significantly better on the types of
minimization problems that arise when optimizing molecular
geometries.

Analyzing Optimization Trajectories. To get a better
understanding of how the RL optimizer facilitated the
convergence, we examined the optimization trajectories of
our RL optimizer and BFGS (with and without line search). In
Figure 5, we visualize the potential energy values for one of the
molecules in our test set along the optimization paths taken by
BFGS, BFGS with Line Search, and the RL optimizer. We
observe that BFGS takes much more conservative steps
compared to the RL optimizer. This behavior can be attributed
to the fact that the practical implementations of BFGS specify
a maximum step size (0.04 Å in our case) to avoid taking an
overly large step in the wrong direction. Complementing BFGS
with a line search procedure addresses this issue, as can be

Figure 3. Parity plot of the numbers of steps taken by BFGS and the
RL optimizer for perturbed and unperturbed geometries of test set
molecules (MMFF94 force field). We use 10 different initial states for
each molecule, and the average number of steps are plotted.

Figure 4. Average number of steps taken by different optimizers for
finding the minimum-energy configuration of the molecules in the
force-field test set. 4(a) Performance when some perturbation is
added to the initial geometries. (b) Optimizers were tested on the
default geometries provided in RDKit, which are close to the local
minima. The shaded bars shown for BFGS w Line Search correspond
to the extra gradient calls in addition to the number of steps taken by
BFGS with line search procedure.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00971
J. Chem. Theory Comput. 2021, 17, 818−825

822

Ahuja et al J. Chem. Theory Comput. 2021, 17, 818.
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Reaction Path Discovery
Reinforcement Learning: Examples in Chemistry

• Input: 

(1) Surface state 

(2) Possible reaction steps 

(3) Products

• What is the most likely next 
reaction leading towards 
products?

• Learn reaction kinetics

Using ideas from the optimal control of the incompletely
known Markov decision process,24 reinforcement learning
utilizes a limited amount of data to train a learning agent to
interact over time with its environment to achieve a goal. Since
the AlphaGo program defeated professional Go world
champions,25 this technique has been extended to solve
problems in video games,26 social science,27 and, most
recently, some semiquantitative tasks in chemistry.28,29

However, defining a quantitative chemical environment
suitable for the reinforcement learning representation of
catalytic reactions is much more complicated in science and
has been barely explored. Moreover, the dynamic interaction
between the agent and the environment requires extensive and
in-depth information that cannot be obtained directly from the
experiment.
Here, we developed a novel deep reinforcement learning

(DRL) framework to determine a complex reaction network
given an initial reactant and a target product from zero prior
knowledge of catalytic reactions. Our framework is not
constrained by the limits of data and human knowledge, but
evolves by itself from scratch into a complete reaction path.
Specifically, we map the evolution of the chemical reaction
path into a Markov decision process taking place in a delicate
environment depicted quantitatively by density functional
theory (DFT) simulations. Using ammonia (NH3) synthesis
on an Fe catalyst as a model system, we demonstrate that DRL
efficiently constructs the complex reaction path by adopting
the proper environment and training algorithms. Our agent
accurately predicts a reaction network that is more plausible
with lower free energy barriers than previous studies.7,8

We selected the Haber−Bosch process as the model system
because NH3 is the main intermediate in the nitrogen cycle on
Earth.30 The Haber−Bosch process alone is responsible for
over 2% of all global energy usage and produces 160 million
tons of NH3 annually.31,32 This scale of production may
increase substantially if ammonia is used as an energy vector to

replace fossil fuels due to its attractive features of high energy
density and abundance of raw materials.33 Metal catalysts are
used to accelerate the reaction, but high temperatures and
pressures of atmospheric nitrogen gas (N2) and hydrogen gas
(H2) (extracted from natural gas sources) are required. A great
deal of research over the last century has aimed to increase the
performance of the Haber−Bosch process, but recent progress
has been slow. To make the process more efficient under
milder conditionswhich would dramatically decrease
production costs and enable smaller, more widely dispersed
plantswe must optimize heterogeneous catalysts, which
requires understanding the reaction mechanism of the Haber−
Bosch process.

■ RESULTS AND DISCUSSION
Environment Definition. We selected Fe-bcc(111) as the

catalytic surface in our study because it is the most activated
surface for NH3 synthesis.34,35 Recent DFT studies on NH3
synthesis over the Fe-bcc(111) surface suggested a plausible
reaction path consisting of 24 important surface configurations
and 12 transition states with a turnover frequency (TOF) of
17.7 NH3/s per 2 × 2 sites at 673 K and 20 atm pressure (1.5
Torr NH3 pressure). As the reaction reaches a steady state with
NH3 pressure increasing to ∼1 atm, the calculated TOF
decreases to 4.6 NH3/s.

8 Although the TOF is consistent with
the single-crystal experimental value of 9.7 NH3/s,

7 these
studies mostly relied on the exhaustive search and domain
expert knowledge, whereas many plausible intermediate states
and branch reaction paths are not able to be considered. The
great complexity of the Haber−Bosch reaction makes it an
ideal subject to challenge our DRL model.
Figure 1(a) displays a working flowchart for the theoretical

framework that integrates the DRL and its energy landscape
environment computed from DFT simulations. Figure 1(b,c)
display the Fe-bcc(111) surface model with a 2 × 2 unit cell in
the (111) plane and six layers perpendicular to the plane. The

Figure 1. Flowchart of reinforcement learning strategy and the Fe-bcc(111) surface with possible sites for absorbents. (a) Schematic diagram of the
DRL and DFT training workflow. The dark blue arrows illustrate the rollout workflow where the data of states, actions, and rewards are sampled
and collected in parallel. The red arrows show the model update pipeline where the rollout synchronization and the neural network update occur.
(b) Top view along the [111] direction. (c) Side view along the [110] direction. (d) Definition of states using a 23-dimension vector. (e)
Definition of absorbents on the Fe-bcc(111) surface. The adsorbed species on the surface are presented by numbers 1 to 6 shown in (e). They are
only present in the state vector from site 1 to 20 (d). The state vector sites 21, 22, and 23 represent the number of N2, H2, and NH3 in the gas
phase, respectively, and should be distinguished from the surface sites (1−20). The N and H atoms are represented by blue and cyan balls,
respectively. The Fe atoms on the top, sublayer, deep-layer, and 4th−6th layers are represented by light blue, orange, purple, and bronze balls,
respectively.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c08794
J. Am. Chem. Soc. 2021, 143, 16804−16812

16805

Lan and An J. Am. Chem. Soc 2021, 143, 16804.
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Reaction Path Discovery
Reinforcement Learning: Examples in Chemistry

Identified the most plausible (lowest energy) 
pathway for Haber-Bosch process on Fe(111): 

Order of adsorption/desorption!

maximum number of stepsa certain down-sampling rate will
be applied to this rollout to randomly select a small subset. It
turns out that those methods balance the explorations and
exploitations of the training and significantly enhance the
stability of the model, allowing it to reach the best strategy.
Further details about the training are given in the computa-
tional methods, and the hyperparameters used in the DRL
model are summarized in Table S2 of the SI.
Evaluation of Agent. We applied the DRL to construct

the reaction network for the H−B reactions on an Fe(111)
surface. The initial state s0 is [00002222000000000000130],
which corresponds to the 4N surface configuration with one
N2 and three H2 in the gas phase. The final state sf has the
same 4N surface configuration with two NH3 in the gas phase,
denoted as vector [00002222000000000000002]. Through the

interaction of the AI agent with the environments discussed
above, the AI agent could determine the most plausible
reaction path connecting s0 and sf.
Figure 2 presents the learned policy πθp(at|st) from the initial

state s0 to the final state sf. For each intermediate step, the
agent observes the state st and performs action at drawn by the
policy model to the next state st+1. As shown in Figure 2, given
each intermediate state decided by the consecutive actions,
there is an action with probability larger than 80% that
exclusively dominates the policy distribution. The convergence
and stability of the agent with the DRL model can also be
confirmed by the curves of the total rewards as a function of
the training episodes shown in Figure S8 of theh SI.

Figure 3. Configurations along the reaction path predicted from the DRL model. Only three steps of N2 dissociation are displayed; the detailed
path is shown in Figure S9 of the SI.

Figure 4. Free energy landscape of the DRL-derived reaction network of the Haber−Bosch process on the Fe-bcc(111) surface. The free energy of
N2 migration (*) is the largest barrier between the states; the details of this process are discussed in Figure S9 of the SI.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c08794
J. Am. Chem. Soc. 2021, 143, 16804−16812

16808

Lan and An J. Am. Chem. Soc 2021, 143, 16804.
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ML Potentials
Reinforcement Learning: Examples in Chemistry

• Deep Neural Networks have several local minima

• Train an ensemble of DNNs together

• Use ensemble to make predictions

Largest deviations?

àAdd training data

ACTIVE LEARNING OF UNIFORMLY ACCURATE … PHYSICAL REVIEW MATERIALS 3, 023804 (2019)

tively enumerated possible structures for labeling. Finally, the
principle of active learning was also used in the reinforced
dynamics scheme [36] for enhanced sampling and free energy
calculation.

II. METHODOLOGY

In this section, we introduce the three essential components
of the DP-GENscheme: the model, the sampler, and the
indicator. Figure 1 shows a schematics of DP-GEN. To ini-
tialize the procedure, we label a small set of initial structures
introduced in Fig. 1(a) and train an ensemble of preliminary
DP models. See the Supplemental Material (SM) [37].

Model. The DPscheme assumes that the potential energy
E can be written as a sum of atomic energies, i.e., E =∑

i E i. Each atomic energy Ei is a function of Ri, the local
environment of atom i in terms of the relative coordinates of
its neighbors within a cutoff radius rc. The dependence of Ei

on Ri embodies the nonlinear and many-body character of the
interatomic interactions. Therefore, we use a deep neural net-
work function (DNN) to parametrize it, i.e., Ei = Ewwwαi (Ri ).
Here αi indicates the chemical species of the ith atom; wwwαi

denotes the parameters of the DNN we call network param-
eters, that are determined by the training procedure. A vital
component of the DPmodel is a general procedure that en-
codes Ri into the so-called feature matrix Di. This procedure
guarantees the conservation of the translational, rotational,
and permutational symmetries of the system, without losing
coordinate information in the local environment. Derivatives
of the energy with respect to the atomic positions give the
forces. During the training process, the network parameters
evolve in order to minimize the loss function, a measure of the
error in the energies and the forces predicted by DP relative to
the labels, i.e., the corresponding DFT predictions [39]. Upon
convergence, the model can match the labels within a small
error tolerance. The details of the architecture of the DPmodel
and the training process are given in Ref. [19].

Sampler. The goal of the sampler is to explore the con-
figuration space in a range of thermodynamic variables, say
temperature and pressure. Ideally one should develop an au-
tomatic/adaptive procedure for this purpose. However, since
exploration is relatively cheap compared to labeling, we adopt
a more heuristic approach in which the exploration is done
through (1) carefully selecting the initial configurations and
(2) exploring the volume-temperature space. We use a variety
of crystal structures as our initial configuration, as in the
procedure illustrated in Fig. 1(a). To explore the volume-
temperature phase space, we adopt a temperature increasing
scheme, in which the temperature of the DPMD simulations
is increased systematically with the iteration index in the
range 50–2000 K. We notice that many structures constructed
in this way are far from equilibrium structures so that the
subsequent DPMD simulations in the 50–2000 K temperature
range produce a large sample of configurations that may differ
substantially from the initial structure. More details on the
initial structures and the thermodynamic conditions in each
iteration are summarized in Tables S1–S4.

Indicator. It is well known that neural network models
are highly nonlinear functions of the network parameters wwwαi .
The loss function, as a function of wwwαi , is highly nonconvex,

FIG. 1. Schematic plot of one iteration of the DP-GEN scheme,
taking the Al-Mg system as an example. (a) Exploration with DPMD.
(a.1) Preparation of initial structures. (I) For bulk structures: start
from stable crystalline structures of pure Al and Mg. In this work,
we use face-centered-cubic (fcc), hexagonal-closed-packed (hcp),
simple cubic (sc), and diamond structures. (II) Compress and dilate
the stable structures uniformly to allow for a larger range of number
densities. We use α to denote the scale factor of the compression
and dilation operations. Here α ranges in the interval 0.96–1.04. (III)
Randomly perturb the atomic positions and cell vectors of all the
initial crystalline structures. The magnitude of perturbations on the
atomic coordinates is σa = 0.01 Å. The magnitude of perturbation
on each cell vector is σc = 0.03 times the length of the cell vector.
(IV) Generate random alloy structures: starting from all the structures
prepared for pure systems, randomly place Al or Mg at different sites.
(V) Generate structures with rigid displacement: starting from stable
fcc and hcp structures, rigidly displace two crystalline halves along
specific crystallographic directions. We only use (100), (110), (111),
and (0001), (101̄0), (112̄0), respectively, for fcc and hcp, as the dis-
placement directions. The magnitudes d of the displacements range
in the interval 0.2–10.0 Å. Based on all the displaced structures,
perform dilation α and perturbation σa and σc, and generate random
alloy structures. (a.2) Canonical simulation at a given temperature.
The temperature increases with the iteration index within the range
50–2000 K. (b) Labeling with electronic structure calculations. (c)
Training with the DP model.

i.e., several local minima exist in the landscape of the loss
function. In the current work, we initialize the wwwαi randomly
according to the standard normal distribution. As a result,
different initializations often lead to different minimizers of

023804-3

Zhang et al Phys. Rev. Materials 2019, 3, 023804.
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Approaching Full Configuration Interaction
Reinforcement Learning: Examples in Chemistry

determinants, the RLCI algorithm may still require multiple
matrix diagonalizations. However, the brunt of this cost can be
greatly reduced by utilizing an iterative subspace diagonalizer,
such as Davidson’s algorithm,49 which reduces the cost to

k( )26 , where k is the subspace dimension. The cost is reduced
further still by solving for the lowest eigenpair once at the
beginning of each episode and then caching the resulting
eigenvector for reuse as an initial guess in subsequent search
iterations. Since each action involves the replacement of a
single pair of determinants, the wave function overlap between
successive actions is very high, and Davidson’s algorithm will
converge in a few number of iterations. As each new
eigenproblem is solved, the guess vector may be overwritten
and reused for the next matrix diagonalization, ensuring that
the guess for the current Davidson diagonalization differs from
the previous one by no more than one row.
Regarding memory utilization, the weights w and v are

currently stored explicitly with dimensions of the full Hilbert

space, and this proves to be the largest memory bottleneck.
However, many of the (potential) weights are never accessed
during the RLCI iterations and may never need to be stored
explicitly. To this end, sparse storage techniques for the
learned weights may be utilized. For future work, it may be that
moving beyond the linear parameterization of the state-action
value function and utilizing deep neural networks can provide a
more compact representation of the state and action space.

3. RESULTS
3.1. Prototypical Cases: Dissociation Curves. In order

to test the performance of the proposed RLCI method, we
have computed potential energy curves for the symmetric
dissociation of N2, CO, and a H8 chain. These systems span a
range of strong to weak correlation and allow us to evaluate the
prototypical performance of RLCI methods for use in quantum
chemistry. Note that we assume a point group of C1 for all
systems investigated here; all data are obtained with an RHF
reference wave function using canonical RHF orbitals, and the
underlying integrals and Hamiltonians were obtained using an
interface to the PySCF software package.50 Although currently
the code is far from optimized, we aim to show that RLCI is a
promising route forward for generating highly compact wave
functions at chemical accuracy. In this work, we choose α = 0.5
and γ = 0.99 for all cases. Learning rates are not damped to
avoid early convergence to local minima, and the somewhat
larger value of the learning rate α is suitable considering the
deterministic CI environment.42 The exploration rate decays as
a function of episode, with τ = exp(−0.5 × episode).
Additionally, all RL runs are terminated within 30 episodes.
Other choices of hyperparameters may be explored in future
work.
An exploration of the dissociation behavior of N2 using the

RLCI method is given in Figure 1. The errors with respect to
FCI for N2 with the STO-6G basis are given in Figure 1a. N2
dissociation is a challenging problem in quantum chemistry,
and most single-reference methods will fail to describe this
process, particularly at larger separations. This is due to the
high amount of strong correlation required to dissociate the
triple bond. To compare with existing sCI methods, we
compared with the heat-bath selected configuration interaction
(HCI) method15 in PySCF with varying levels of approx-
imation. HCI depends on two parameters, ϵ1 and ϵ2, and

Figure 1. Comparison of RLCI and HCI methods for the dissociation of the N2 molecule with the STO-6G basis with different levels of
approximation. (a) Difference between FCI and RLCI or HCI potential energy curves, relative to the FCI minimum. The shaded gray area
indicates the region of chemical accuracy (1 kcal/mol). (b) Comparison of the number of determinants used to calculate each point along the
potential energy surface. The size of the full space is 14,400 determinants.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00010
J. Chem. Theory Comput. 2021, 17, 5482−5491

5486

• Input: 

(1) Current Slater determinants

(2) Perturbation-based estimates for adding/removing Slater determinants

• What is the ideal combination of Slater Determinants?

• Learn compression of FCI wave function N2 Dissociation

Goings et al J. Chem. Theory Comput. 2021, 17, 5482.
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Approaching Full Configuration Interaction
Reinforcement Learning: Examples in Chemistry

• Transfer learning is strength of RL

• Learn on one system, adapt knowledge to the next

à Gain in efficiency and accuracy!

As alluded to previously, it may appear that the memory
requirements for storing the weights for Qw(s, a) are
prohibitive. To show that memory need not be a limiting
factor, Figure 5 shows an example of the distribution of

magnitudes for the learned weights in a H12 ring with a
subspace dimension of k = 10,000, the same as that used in
Table 1, which recovered around 96% of the FCI correlation
energy. In this case, nearly 87% of the determinants have zero
weight and therefore need not be explicitly stored.
Furthermore, of the weights with a non-zero magnitude,
nearly half fall below 10−5, suggesting that cutoffs may be
employed to further reduce demands on the weight storage.
Thus, sparse storage coupled with pruning techniques may be
employed to efficiently manipulate Qw(s, a). Moreover, the
weights need not be stored in memory: as the number of
elements that are updated at any given time according to eq 20
goes as subspace dimension k, the full weights may instead
utilize scratch disk space. An analogous argument extends to
the handling of auxiliary weights v.
3.3. Transfer Learning. A benefit of utilizing reinforce-

ment learning is the ability for the agent to apply knowledge
gained in one domain to a related, but different, domain. This
is known as transfer learning. If successful, the agent does not
need to relearn all salient aspects of the new environment but
can fine-tune the optimal actions based on experience. As a test
of the potential for transfer learning in RLCI, we apply the
following transfer protocol to the symmetric dissociation of a
H8 ring with the STO-6G basis.
To attempt transfer learning for this scenario, the RLCI

algorithm is initially run for 30 episodes on the H8 ring with an
interatomic separation of 0.9 Å. This is to ensure that the agent
has learned an optimal representation of the wave function.
Then, the geometry is incremented by 0.05 Å up to 1.7 Å, and
the RLCI method is run for the much shorter 15 episodes. The
transfer protocol explored here involves initializing the RLCI
with the wave function and learned weights for the previous
geometry, similar to the approach utilized in the work of Coe
for the MLCI method.41 Over the course of computing the
potential energy curve, the agent fine-tunes the previous
experience to incorporate the knowledge gained elsewhere. A
comparison between RLCI with and without transfer

compared to the FCI results is given in Figure 6. In most
cases, the previous knowledge allows RLCI to obtain an

improved wave function and energy in fewer iterations
compared to RLCI without transfer learning. Furthermore,
because the agent is able to learn on-the-fly, it appears to better
handle the strong correlation as the interatomic distance
increases, evidenced by the growing difference in energy
between the RLCI protocols. It bears mentioning that transfer
learning is problem-dependent. For example, even in Figure 6,
despite transfer learning, the RLCI method with transfer does
not obtain a better estimate of the wave function at 1.3 Å
compared to RLCI without transfer learning. More episodes
may improve the wave function at this point. Further
exploration of different types of transfer protocols41 and,
crucially, representations of the wave function for the state-
action value function Qw(s, a), such as neural networks, should
be explored further. Despite this, the example shown in Figure
6 demonstrates that learned information about the wave
function at one geometry may potentially be exploited for
improved performance at other geometries.

4. CONCLUSIONS
Here, we have explored the potential of using reinforcement
learning techniques to solve the sCI problem. In the
prototypical cases explored, RLCI outperformed HCI in
terms of generating more compact wave functions without
neglecting chemical accuracy (<1 kcal/mol from FCI).
Although we do not claim that the current implementation is
necessarily faster than existing sCI methods, we have provided
support that approaches based on reinforcement learning may
yield more optimally compact wave functions, at least at the
determinantal level. In these dissociation curves presented
here, HCI appears to require on the order of 2 − 3× the
number of determinants for comparable accuracy to RLCI. As

Figure 5. Sparse distribution of learned weights wi after 30 episodes of
RLCI for a H12 ring with an interatomic spacing of 1.5 Å and an STO-
6G basis. The weights were sorted and plotted according to
magnitude, with a constant of 10−12 added to avoid plotting zero
on a log scale. The learned weights are sparse, with roughly 13% of
the over 2.7 million determinants being non-zero. For this particular
case, a subspace dimension of k = 10,000 was utilized, which
recovered around 95% of the FCI correlation energy. All other
parameters correspond to the defaults used elsewhere in this work.

Figure 6. Symmetric dissociation of a H8 ring using the STO-6G
basis, with and without transferring the wave function and associated
weights. In this case, the dimension of the subspace k = 120
determinants, approximately 2.5% of the full Hilbert space. The RLCI
method with transfer is able to achieve a smaller error with respect to
FCI energies with fewer iterations for the majority of the points
considered. Both dissociation curves begin at the same bond length of
0.9 Å, which is run for 30 episodes. For subsequent points along the
potential energy curve, the geometry is incremented in steps of 0.05 Å
and the RLCI method is run for 15 episodes. For RLCI with transfer,
the wave function and learned weights from the previous geometry are
used to initialize the algorithm. Otherwise, all other initializations,
including the initial wave function for RLCI transfer, used a single
iteration of the greedy algorithm. All other parameters are the same as
those used elsewhere in the text.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00010
J. Chem. Theory Comput. 2021, 17, 5482−5491

5489

Fully learn at 0.9 Å (30 iterations) 
Adapt knowledge for other distances (15 iterations) 

H8 ring

Goings et al J. Chem. Theory Comput. 2021, 17, 5482.
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Active Reinforcement Learning
Case 2: De Novo Training Set Construction

• Action: Which sample to add to the training set

• State: Current training set

• Reward: 

(1) Robustness of fitted model 

(2) dominating terms best defined
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Cluster Expansion Model Hamiltonians
Example: Training of Model Hamiltonian

Typical case for ”one use only” potentials

à Minimizing computational cost for its production

à We knowingly accept inaccuracies

Typical applications

• Description of alloy (bulks, surfaces, NPs)

• Adsorption (and reaction) on surfaces
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What is a Cluster Expansion?
Example: Training of Model Hamiltonian

A linear model, mapping configurations (patterns) and energy contributions

2- and higher body terms matter

Introduction S-ALMO ASANN Reinforcement sampling Conclusion

Context

Model Hamiltonian: an empirical model

Set of configurations + adsorption energies (DFT level)
Multidimensional linear fit (cluster expansion based):

Eads(g) =
X

a

�aNa(g)

| {z }
1-body terms

+
X

a,b

�a–bNa–b(g)

| {z }
2-body terms

+
X

a,b,c

�a–b–cNa–b–c(g)

| {z }
3-body terms

+ . . .

| {z }
lateral interactions

Challenge in describing lateral interactions

Model quality relies on:
Terms selection (relevant parameters)
Configurations set (relevant training set)

Ruben Staub ENS de Lyon

Numerical Tools for Understanding and Quantifying Chemical Interactions of Adsorbates on Metallic Surfaces 26 / 40
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Context

Model Hamiltonian: an empirical model

Set of configurations + adsorption energies (DFT level)

Multidimensional linear fit (cluster expansion based):

Challenge in describing lateral interactions
Model quality relies on:

Terms selection (relevant parameters)
Configurations set (relevant training set)

Ruben Staub ENS de Lyon

Numerical Tools for Understanding and Quantifying Chemical Interactions of Adsorbates on Metallic Surfaces 26 / 40

1-body estimate (ev): -12.5 -8    -10.2 -9.6
True energy (eV): -8.6 -3.7 -7.2 -6.2

y = 0.8692x - 4.4903
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What is a ”Good” Training Set?
Example: Training of Model Hamiltonian

Automatically created, better than random

• Relevant: Better sampling of regions with 
important lateral interactions

• Diverse: Don’t miss patterns

• As small as possible: Low redundancy

Dominating strategy

• Construction by hand 

• Exploiting chemical intuition

• User time consuming!
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Cluster Expansion: A board game perspective
Example: Training of Model HamiltonianIntroduction S-ALMO ASANN Reinforcement sampling Conclusion

Context

Hidden score contributions

Long-term strategy game

Figure: "Build a configuration" game example

Ruben Staub ENS de Lyon

Numerical Tools for Understanding and Quantifying Chemical Interactions of Adsorbates on Metallic Surfaces 30 / 40

• Adsorbing one adsorbate after the other

• Learn positive and negative lateral interactions

• No prior knwoledge 

• Long-term strategy

Staub and Steinmann, submitted.
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UCT: A Typical Reinforcement Learning Approach
Upper Confidence bounds applied to Trees : 

Monte Carlo Tree Search 

Based on previous plays Explore a new possibility Determine the score Update information
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UCT: A Typical Reinforcement Learning Approach
• Upper Confidence bounds applied to Trees : 

Monte Carlo Tree Search 

• Combined with Upper Confidence Bounds

• Optimal Exploitation/Exploration trade-off
Like in multi-armed bandit problem (e.g., UCB1)

wi

ni

+ c

√

lnNi

ni

Ni: Total plays passing through parent node
ni: plays passing through considered node
wi: Wins going through node i
c: exploration constant; √2 in theory

Auer et al Mach. Learn. 2002, 47, 235.
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Particularities when Constructing a Training Set
Example: Training of Model Hamiltonian

• UCT is trained by simulating games

• Relies on fast evaluations of the true score

• Here: true score = DFT computation (expensive!)

à We are actually exploiting the learning period!

àAccelerate Learning 

à Increasing incentive for exploration (curiosity)

Staub and Steinmann, submitted.
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Tweaks of UCT to the Construction of Training Sets
Example: Training of Model Hamiltonian

• When comparing unseen nodes

à minimize the variance (A-optimal DoE)

àAccelerate exploration (curiosity)

• Use KL-UCB as faster converging compared to UCB1

à Tighter bounds, make exploitation as efficient as possible 

Garivier et al Procs Mach. Learn. Res. 2011, 19, 359.
Staub and Steinmann, submitted.

Thiede et al. arXiv, 2020, 2012.11293.
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Proof of Principle: Tree
Example: Training of Model Hamiltonian

Completely general, all kind of surfaces and adsorbates

30° 60°  45° 

Staub and Steinmann, submitted.
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Proof of Principle: System
Example: Training of Model Hamiltonian

Introduction S-ALMO ASANN Reinforcement sampling Conclusion

Results

Application

Application to CO oxidation on
Pd(111)2

Reference Model Hamiltonian:
Up-to 3-body terms
Up-to next nearest neighbors
Maximum 3 sites involved
Selection of 48 terms out of 70 Figure: Example of reference

training set configuration[?]

Ruben Staub ENS de Lyon

Numerical Tools for Understanding and Quantifying Chemical Interactions of Adsorbates on Metallic Surfaces 33 / 40

• CO oxidation on Pd(111)

• O, CO as adsorbates

• Ternary (fcc and hcp) adsorption sites
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Proof of Principle: System
Example: Training of Model Hamiltonian

• CO oxidation on Pd(111)

• O, CO as adsorbates

• Ternary (fcc and hcp) adsorption sites

• Model Hamiltonian

Up to 3-body terms

Up to next-nearest neighbors

Maximum 3 sites involved

à 70 possible terms, but only 48 considered important

Introduction S-ALMO ASANN Reinforcement sampling Conclusion

Results

Application

Application to CO oxidation on
Pd(111)2

Reference Model Hamiltonian:
Up-to 3-body terms
Up-to next nearest neighbors
Maximum 3 sites involved
Selection of 48 terms out of 70 Figure: Example of reference

training set configuration[?]

Ruben Staub ENS de Lyon

Numerical Tools for Understanding and Quantifying Chemical Interactions of Adsorbates on Metallic Surfaces 33 / 40

Piccinin et al ACS Catal. 2014, 4, 2143.
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Recursive Least-Squares Solver
Example: Training of Model Hamiltonian

• (Active) Reinforcement Learning of a linear problem

à Update least squares solution instead of recomputing it!

• Exploit rank-deficiency and rank-factorization 

Staub and Steinmann, Appl. Math. Comput. 2021, 399, 125996.

https://gitlab.com/lch_interfaces/rank-greville

Figure 3: Timings for solving the linear least-squares problem on a random rank-deficient
square observations matrix RN (n, n, r) with a fixed rank r = 100. The asymptotic dependency
with respect to n is fitted on the last points and reported in the legend.

Figure 4: The fastest algorithm is represented for various n/m and r/n ratios, with m = 4000.
The contour plot represents the interpolated relative margin by which an algorithm is the
fastest (e.g. ⇥1.25 means that the execution time for the second fastest algorithm was 1.25
times larger than for the fastest one).

of RLS solvers.

18

At low rank r to row n ratio,
rank-Greville is faster (independent on 
row/column ratio, n/m) even for full solution 
of the least-squares problem!
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Proof of Principle: Results
Example: Training of Model Hamiltonian

UCT+DoE allow to automatically focus on most relevant features

Staub and Steinmann, submitted.
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Conclusions
• Compact, representative training sets for robust interpolations

• Random sampling is a poor strategy for small training sets

• Farthest-point sampling is convenient and robust

• Reinforcement learning is underused in chemistry

Optimization problems are frequent: From geometry to FCI

• (Active) Reinforcement learning for automatic optimal training set construction.
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