

Your first steps into IBM Quantum Computing

IBM Client Center Montpellier
Jean-Michel Torres | torresjm@fr.ibm.com
Nov 16nd 2021

Part 1

Guided tour of the IBM Quantum devices,

and Quantum « Hello World! »

0
 qubit : quantum bit

NOPT

Controlling a qubit

« PAULI » Operators

rotation around x axis	θ	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ qc.x $(q r[n])$	RX	$\left(\begin{array}{cc}\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\ -i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}\end{array}\right)$
rotation around y axis	Y	$\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ qc. y $(\mathrm{qr}[\mathrm{n}])$	RY	$\left(\begin{array}{cc}\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2}\end{array}\right)$
rotation around z axis		$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ qc. $z(q r[n])$	$\mathrm{R} /$	$\left(\begin{array}{cc}e^{-i \frac{\theta}{2}} & 0 \\ 0 & e^{i \frac{\theta}{2}}\end{array}\right)$
Identity	I	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ qc.id $(\mathrm{qr}[\mathrm{n}])$		

Bloch Sphere

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle
$$

CNOT : flips target qubit according to control qubit state.
$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
measurement measures quantum state in quantum register into classical register (0/1)

quantum operators :

H operator (Hadamard)

$$
|0\rangle-H \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

creates equal superposition of states $|0\rangle$ and $|1\rangle$

Control-Not operation

target qubit state is flipped if and only if the control qubit is in state |1
classical operators
creates quantum entanglement of two qubits

Hello World!

Hello World! example

Hadamard gate applied to q_{0}, then Control-Not applied to q_{1}, controlled by q_{0}

With words :

System starts in $|00\rangle$ (both q_{0} and q_{1} in state $|0\rangle)$.
Then q_{0} goes through Hadamard and gets into equal superposition of $|0\rangle$ and |1).
After q_{0} controls q_{1}, the state of q_{1} is in a superposition of $|0\rangle \&|1\rangle$, (q_{1} stays at
$|0\rangle$ when q_{0} is $|0\rangle$, and q_{1} goes $|1\rangle$ when q_{0} is $\left.|1\rangle\right)$.
So : both q_{0} and q_{1} are in $|0\rangle$ (state $|00\rangle$) or both q_{0} and q_{1} are in $|1\rangle$ (state $\left.|11\rangle\right)$.
Our system is in equal superposition of $|00\rangle$ and |11〉.
The two qubits are entangled: if you measure one of the qubits, you immediately know the state of the other.

q_{0}

q_{1}

This produces the < Bell-State»

With maths :

Stage 1 (H on q0) :

$$
H|00\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)
$$

Applying CNOT: left part of the sum stays as is, right term goes to $|11\rangle$ resulting state is $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$.

One can easily prove there are no $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}$ such that:
$(\boldsymbol{\alpha}|0\rangle+\boldsymbol{\beta}|1\rangle) \otimes(\boldsymbol{\gamma}|0\rangle+\boldsymbol{\delta}|1\rangle)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
So, the resulting state is not the product of two quantum states, instead this is an entangled state.
$\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$
Stage 2: $\operatorname{CNOT}(0,1)$
$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right) \times \frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)$

$$
=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Quantum Circuit

\square Circuits / Untitled circuit saved

Demo : Bell state on a quantum machine

Part 2

using qiskit library to run quantum program with Python.

```
from qiskit import QuantumCircuit, Aer, execute
backend = Aer.get_backend('qasm_simulator')
qc = QuantumCircuit(2,2)
qc.h(0)
qc.cx(0,1)
qc.measure([0,1],[0,1])
d = execute(qc,backend).result().get_counts()
print(d)
```

\# imports
\# select a device for execution
\# create a quantum circuit having 2 qubits and 2 cbits
\# buid the circuit by
\# adding operators on qubits
\# use measurement gates to retrieve results
\# execute qc on backend and get cumulated results into
\# a dictionnary

```
{'00': 491, '11': 533}
```


Historic Quantum Algorithms

Deutsch	1985	$2 \rightarrow 1$
Bernstein-Vazirani	1992	$\mathrm{~N} \rightarrow 1$
Deutsch-Josza	1992	$2^{N-1}+1 \rightarrow 1$
Shor	1994	$\mathrm{e}^{\mathrm{n}} \rightarrow\left(\mathrm{n}^{2}(\log \mathrm{n})(\log \log \mathrm{n})\right)$
Grover	1996	$\mathrm{~N} \rightarrow \sqrt{N}$

More and new ones on quantumalgorithmzoo.org/

Deutsch \& Deutsch-Josza

Bersntein-Vazirani

