• • • • • • • • • • • •

Your first steps into IBM Quantum Computing

IBM Client Center Montpellier Jean-Michel Torres | <u>torresjm@fr.ibm.com</u> Nov 16nd 2021

Part 1

Guided tour of the IBM Quantum devices,

and Quantum « Hello World! »

© 2021 IBM Corporation

quantum operators :

H operator (Hadamard)

$$|\mathbf{0}\rangle - \mathbf{H} \rightarrow \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle)$$

creates equal superposition of states $|0\rangle$ and $|1\rangle$

Control-Not operation

target qubit state is flipped if and only if the control qubit is in state **|1**>

creates quantum entanglement of two qubits

© 2021 IBM Corporation

Hello World!

Hello World! example

Hadamard gate applied to q_0 , then Control-Not applied to q_1 , controlled by q_0

This produces the « Bell-State »

With words :

System starts in $|00\rangle$ (both q_0 and q_1 in state $|0\rangle$).

Then q_0 goes through Hadamard and gets into equal superposition of $|0\rangle$ and $|1\rangle$.

After q_0 controls q_1 , the state of q_1 is in a superposition of $|0\rangle \& |1\rangle$, $(q_1$ stays at $|0\rangle$ when q_0 is $|0\rangle$, and q_1 goes $|1\rangle$ when q_0 is $|1\rangle$).

So : both q_0 and q_1 are in $|0\rangle$ (state $|00\rangle$) or both q_0 and q_1 are in $|1\rangle$ (state $|11\rangle$). Our system is in equal superposition of $|00\rangle$ and $|11\rangle$.

The two qubits are entangled: if you measure one of the qubits, you immediately know the state of the other.

In between :

System starts in $|00\rangle$, then : H $|00\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$

Applying CNOT: left part of the sum stays as is, right term goes to $|11\rangle$ resulting state is $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$.

One can easily prove there are no $\alpha, \beta, \gamma, \delta$ such that:

 $(\boldsymbol{\alpha}|0\rangle + \boldsymbol{\beta}|1\rangle) \otimes (\boldsymbol{\gamma}|0\rangle + \boldsymbol{\delta}|1\rangle) = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \qquad \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0\\ 1\\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0\\ 0\\ 1 \end{pmatrix}$

So, the resulting state is not the product of two quantum states, instead this is an entangled state.

© 2021 IBM Corporation

With maths :

Stage 1 (H on q0) :

```
(H \otimes I) |00\rangle =
\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}
Stage 2: CNOT(0,1)
(1 \quad 0 \quad 0 \quad 0) \quad (1) \quad (1)
```

```
 = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)
```


Quantum Circuit

Circuits / Untitled circuit saved

Demo : Bell state on a quantum machine

Part 2

using qiskit library to run quantum program with Python.

Programing

In [1]:		<pre>from qiskit import QuantumCircuit, Aer, execute backend = Aer.get_backend('qasm_simulator')</pre>	<pre># imports # select a device for execution</pre>
	3 4 5	<pre>qc = QuantumCircuit(2,2)</pre>	<pre># create a quantum circuit having 2 qubits and 2 cbits</pre>
	6 7 8	qc.h(0) qc.cx(0,1)	<pre># buid the circuit by # adding operators on qubits</pre>
		qc.measure([0,1],[0,1])	<pre># use measurement gates to retrieve results</pre>
	11	<pre>d = execute(qc,backend).result().get_counts() print(d)</pre>	<pre># execute qc on backend and get cumulated results into # a dictionnary</pre>

```
{'00': 491, '11': 533}
```


Historic Quantum Algorithms

Deutsch	1985	2 → 1
Bernstein-Vazirani	1992	N → 1
Deutsch-Josza	1992	$2^{N-1} + 1 \rightarrow 1$
Shor	1994	$e^n \rightarrow (n^2(\log n)(\log \log n))$
Grover	1996	$N \rightarrow \sqrt{N}$

More and new ones on quantum algorithm zoo.org/

Deutsch & Deutsch-Josza

Bersntein-Vazirani

